Current Issue : April-June Volume : 2025 Issue Number : 2 Articles : 5 Articles
Triclabendazole (TCB) is a well-established anthelmintic effective in treating fascioliasis, a neglected tropical disease. This study employs quality by design (QbD) to investigate the impact of TCB polymorphism and pharmacotechnical variables, from the development of immediate-release tablets to process optimization and green analysis. Critical process parameters (CPPs) and critical material attributes (CMAs), characterized by type of polymorph, composition of excipients (talc, lactose, cornstarch, and magnesium stearate), and compression force, were screened using a Plackett– Burman design (n = 24), identifying polymorphic purity and cornstarch as a CPP. To establish a mathematical model linking CPP to dissolution behaviour, a multiple linear regression (MLR) was applied to the training design (central composite design, n = 18). Simultaneously, a near-infrared spectroscopy coupled to partial least squares (NIR-PLSs) method was developed to analyze CPPs. An independent set of samples was prepared and analyzed using the NIR-PLSs model, and their dissolution profiles were also obtained. The PLSs model successfully predicted the CPPs in the new samples, yielding almost quantitative results (100 ± 3%), and MLR dissolution predictions mirrored the actual dissolution profiles (f2 = 85). In conclusion, the developed model could serve as a comprehensive tool for the development and control of pharmaceutical formulations, starting from the polymorphic composition and extending to achieve targeted dissolution outcomes....
Background: Trihexyphenidyl (THP) has been widely used for over three decades as pediatric pharmacotherapy in patients affected by segmental and generalized dystonia. In order to achieve effective and safe pharmacotherapy for this population, new formulations are needed. Objective: The aim of this work is the development of trihexyphenidyl orodispersible minitablets (ODMTs) for pediatric use. Methods: Six different excipients were tested as diluents. The properties of powder mixtures were evaluated before direct compression and pharmacotechnical tests were performed on the final formulation. The determination of the API content, uniformity of dosage, and physicochemical stability studies were analyzed by an HPLC-UV method. Results: The developed ODMTs met pharmacopeia specifications for content, hardness, friability, disintegration, and dissolution tests. The physicochemical stability study performed over 18 months shows that API content remains within 90.0–110.0% at least for this period. Conclusions: These ODMTs will allow efficient, safe, and high-quality pharmacotherapy....
This study aims to build an optimal drug delivery system by manufacturing and evaluating a hydrogel contact lens using Tretinoin (ATRA) and protein nanoparticles to improve the drug delivery system as an ophthalmic medical contact lens. To evaluate the optical and physical properties of the manufactured lens, the spectral transmittance, refractive index, water content, contact angle, AFM, tensile strength, drug delivery, and antibacterial properties were analyzed. The contact lens was manufactured to contain ATRA and bovine serum albumin (BSA) in different ways, and the results confirmed that A, B, and C each had different physical properties. In particular, for Sample A, using the soak and release method and using ATRA solution in the contact lens with BSA added, the wettability was 55.94◦, the tensile strength was 0.1491 kgf/mm2, and drug delivery released 130.35 μm over 336 h, which was found to be superior to samples B and C. Therefore, the three hydrogel contact lenses compared in this study according to the addition method of ATRA and BSA can be used in various ways to build an optimal drug delivery system that is very useful as an ophthalmic medical lens....
Background/Objectives: Although androgenic alopecia is the most prevalent among noncicatricial alopecia, it still lacks an effective and safe treatment. Dutasteride (DUT) shows promising results in hair regrowth; however, oral DUT intake causes serious sexual adverse events. Hence, we produced liposomes with different bilayer structures and evaluated the capability of such systems in increasing DUT accumulation in the hair follicles. Methods: In vitro skin penetration tests were performed with porcine ear skin, and the follicular targeting factor (Tf) was calculated as the ratio between DUT amount in HFs and DUT recovered from the sum of all skin layers. Results: While the stiffer DUT-loaded liposome was not able to target the hair follicles in 12 h (Tf = 0.15), a DUT-loaded liposome with an edge activator in its composition, i.e., transfersomes, promoted better control over DUT release and a higher Tf (0.32) (p < 0.005). Conclusions: Transfersomes present higher affinity with DUT providing a better controlled release; hence, they are a better option for DUT follicle targeting compared to liposomes. Further formulation optimizations are needed aiming to prolong such targeting effect....
Background: Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system. Methods: The tablets were formulated using hydrophilic polymers, such as Carbopol® 71G NF and Noveon® AA-1. The release kinetics of M-HCl and HNK were investigated through advanced mathematical models, including fractal and multifractal dynamics, to capture the non-linear and time-dependent release processes. Traditional kinetic models (zero-order, first-order, Higuchi equations) were also evaluated for comparison. In vitro dissolution studies were conducted to determine the release profiles of the active ingredients under varying polymer concentrations. Results: The study revealed distinct release profiles for the two active ingredients. M-HCl exhibited a rapid release phase, with 80% of the drug released within 4–7 h depending on polymer concentration. In contrast, HNK demonstrated a slower release profile, achieving 80% release after 9–10 h, indicating a greater sensitivity to polymer concentration. At shorter intervals, drug release followed classical kinetic models, while multifractal dynamics dominated at longer intervals. Higher polymer concentrations resulted in slower drug release rates due to the formation of a gel-like structure upon hydration, which hindered drug diffusion. The mechanical properties and stability of the matrix tablets confirmed their suitability for extendedrelease applications. Mathematical modeling validated the experimental findings and provided insights into the structural and time-dependent factors influencing drug release. Conclusions: This study successfully developed dual-drug extended-release matrix tablets containing metformin hydrochloride and honokiol, highlighting the potential of hydrophilic polymers to regulate drug release. The findings emphasize the utility of advanced mathematical models for predicting release kinetics and underscore the potential of these formulations to improve patient compliance and therapeutic outcomes in diabetes management....
Loading....